
BLAZE: A Parallel Fluid Solver and Renderer on the GPU

ALEXANDRE SIROIS-VIGNEUX,McGill University

Fig. 1. Render of three distinct scenes simulated and rendered on the GPU using Blaze, the program presented in this paper. This shows from left to right: fire
debris, an explosion and some ground fires.

Blaze is a fluid solver and renderer running entirely on the GPU. Our frame-
work avoids expensive memory transfers between host and device by only
allocating grid information on the device which leads to remarkable perfor-
mance gain in practice. Blaze can read scene descriptions generated using a
minimalist user interface for a simple and yet powerful fluid workflow.

Code: https://github.com/asiroisvigneux/Blaze
Video: https://youtu.be/lxIIJf6EVqo

Additional Key Words and Phrases: Computational Fluid Dynamics, Gauss-
Seidel red-black, GPU, Raymarching

1 INTRODUCTION
Fluid simulation and rendering are often approached in the visual
effects industry as two separate sequential processes where the con-
tent of the simulation needs to be stored on disk to later be rendered
by another piece of software. Those large memory transfers impose
serious restrictions on how those applications can be accelerated
using graphics hardware. Storing the volumetric data on disk also
imposes noticeable stress on the network in terms of bandwidth
and requires massive storage solutions as some of those simulations
can easily reach tens of terabytes per version. It is also important to
note that those simulations are usually visualized using the graphic
pipeline which does not accurately represent the final ray marched
image. This discrepancy is often a source of problems as some arti-
facts in the fluid might only become visible using the high-quality
render engine which usually happens after the whole simulation.
Our method skips these intermediate steps and goes directly to the
final high-quality render in the least amount of steps. The output
of our program can then be trusted at all times without any loss of
fidelity. Only the particle files and the rendered frames need to live
on disk which requires modest storage hardware compared to the
requirement of also storing the volumetric grids.

2 RELATED WORK
In 1999, Stam presented his paper on stable fluids that, for the
first time, proposed an unconditionally stable model to simulate
complex fluid-like flows. This publication was a major contribution

Author’s address: Alexandre Sirois-Vigneux, McGill University, alexandre.
sirois-vigneux@mail.mcgill.ca.

to computational fluid dynamics (CFD) for computer graphics and
has triggered multiple follow-up publications in the years after
[Stam 1999]. In 2008, Bridson published the first edition of his book
"Fluid Simulation for Computer Graphics" which was revised with
a second edition in 2015 covering all aspects of fluid simulation,
from the mathematics and algorithms to implementation. This will
become a reference to many interested in entering the field of CFD
[Bridson 2015]. In 2009 Gomes et al. investigated the acceleration
that could result from porting the solve of the sparse linear systems
for the non-divergent projection to the GPU [Gomes 2009]. Their
comparison between the CPU and GPU implementation has shed
some light on the benefits and challenges associated with the use of
programmable GPUs for fluid simulations.

3 METHODS
Our implementation of the solver and renderer is done completely
on the GPU using the CUDA Toolkit 10.2. The idea is to move the
entire fluid simulation and rendering pipeline to the graphic card to
avoid the expensive cost of transferring grid information between
host and device memory. Those memory transfers are known to be
the primary source of bottlenecks in most GPU accelerated applica-
tions. In our framework, only the source particles will be pushed
to the device and, similarly, only the framebuffer containing the
rendered pixels will be retrieved from GPU memory. This design
choice allows us to maximize occupancy on the GPU and keep it
fully saturated at virtually any point of execution. The structure of
our program was inspired by two great repositories [Bitterli 2021]
and [Allen 2021]. For a more detailed overview of the program’s
execution, see Fig. 2.

3.1 Simulation
Instead of solving for the Navier-Stokes equations, we solve for the
Euler equations of inviscid fluid by effectively dropping the viscosity
term from the equations.

𝜕®𝑢
𝜕𝑡
+ ®𝑢 · ∇®𝑢 + 1

𝜌
∇𝑝 = ®𝑔 (1)

∇ · ®𝑢 = 0 (2)

https://github.com/asiroisvigneux/Blaze
https://youtu.be/lxIIJf6EVqo

:2 • Sirois-Vigneux, A.

Velocity Drag

Vorticity Confinement

Buoyancy Force

Wind
Turbulence

Project Non-Divergent

Advect Grids

Temperature Cooldown

Convolve MS 3D Texture

Raymarch Temp and MS 3D Textures

Write Framebuffer to Disk

Read scene description from BLZ file

Read source particles from PART file

Scaer Particles to Grids

R
E

N
D

E
R

S
IM

U
L

A
T

IO
N

CPU GPU

G
O

 T
O

 N
E

X
T

 F
R

A
M

E

Fig. 2. Execution overview of Blaze

We use splitting to decompose the complex equations into multiple
smaller components that are then numerically solve one after the
other [Bridson 2015]. The three main steps of our solve are in order:
Body Forces

𝜕®𝑢
𝜕𝑡

= ®𝑔, (3)

Pressure / Incompressibility
𝜕®𝑢
𝜕𝑡
+ 1
𝜌
∇𝑝 = 0 such that ∇ · ®𝑢 = 0 (4)

and Advection
𝜕®𝑞
𝜕𝑡
+ ®𝑞 · ∇®𝑢 = 0. (5)

Efficient Memory Usage: To minimize our memory footprint
in GPU memory, we chose to simulate density and temperature as a
single field. The range of temperature values is remapped at render
time to use the full range as smoke density and the high end of the
spectrum to simulate light emission from fire. This does impose
some limitations on the type of phenomena that can be model with
our solver, but it also allows it to handle higher grid resolution. Fig.
3 gives a detailed view of the primary data structures required in
GPU memory at runtime.
Staggered Grids: Following the recommendation in [Bridson

2015], we use Marker-and-Cell (MAC) or Staggered grids to store
the velocity information, see Fig. 4. Although it makes the imple-
mentation more complex and can lead to more warp divergence due
to misalignment between grid dimensions, it also provides second-
order accurate central differentiation for free.

𝜕𝑞

𝜕𝑥
≈

𝑞𝑖+1/2 − 𝑞𝑖−1/2
Δ𝑥

(6)

This is especially useful when trying tomake our velocity divergence-
free by avoiding the non-trivial null-space problem [Bridson 2015].

u

v

w
t

Fig. 4. A single MAC grid voxel where the velocity values lives at the bound-
aries of the grid cell while everything else (temperature, pressure and diver-
gence) is stored at the center.

Project Non-Divergent: Tomake our velocity grids divergence-
free we need to numerically update our velocities with

®𝑢𝑛+1 = ®𝑢𝑛 − Δ𝑡 1
𝜌
∇𝑝 such that ∇ · ®𝑢𝑛+1 = 0. (7)

This leads to the following Poisson problem

− Δ𝑡

𝜌
∇ · ∇𝑝 = −∇ · ®𝑢 (8)

that can be expressed as a linear system of equations with unknown
pressure. There exist multiple ways of solving such a system like
Jacobi, Gauss-Seidel or Conjugate Gradient to name a few. Our
program implements a Gauss-Seidel red-black solver since previous
work shows it outperforms both Jacobi and Conjugate Gradient in
the context of a parallel GPU implementation [Gomes 2009].
One important advantage of this algorithm compared to Jacobi

is that it can be performed in-place. This leads to lower memory
consumption while taking advantage of the previously calculated
values to speed up convergence. The idea behind this technique is
to conceptually apply a red-black checker pattern across the grid so
no neighboring voxels share the same color, see Fig. 5.

Read Only Voxels

Read / Write Voxels

First Half Iteration Second Half Iteration

Pressure Update

Pressure Voxel
Neighbourhood

Fig. 5. Visualization of the Gauss-Seidel red-black partitioning of the pres-
sure grid. Each color is solved consecutively to avoid write hazards.

The Gauss-Seidel update of a pressure voxel will involve itself
and all its direct neighboring voxels tagged with a different color,
meaning those are read-only for the course of the first half iteration.
The second half iteration will update the other color while keeping
the previously updated color unchanged. This two-step process
eliminates the write hazards inherent to parallel implementation of
the Gauss-Seidel algorithm thus ensuring deterministic results. In
practice, the color change is sequentially performed on each 2D slice
of the domain to exploit precalculated values as much as possible.

BLAZE: A Parallel Fluid Solver and Renderer on the GPU • :3

DIVERGENCE PRESSUREVELOCITY X VELOCITY Y VELOCITY ZTEMPERATURE

SIMULATION GRIDS RENDER 3D TEXTURES

TEMPERATURE MS

W × H × D (W+1) × H × D W × (H+1) × D W × H × (D+1)

W × H × D W × H × D W × H × D 1/64 (W × H × D)

Fig. 3. Data Structures in GPU memory. The dimensions of the structures are indicated above where W, H and D represent the width, height and depth of the
fluid domain respectively. Some structures are duplicated in depth to indicate the presence of a front and back buffer in memory. This data duplication is
necessary for tasks such as advection and convolution where in-place operations are not possible.

Grid Advection and Interpolation: Velocity and temperature
are transported through the grid using Semi-Lagrangian [Stam 2003]
advection with third-order accurate Runge-Kutta method [Ralston
1962].

𝑘1 = 𝑓 (𝑞𝑛)

𝑘2 = 𝑓 (𝑞𝑛 + 1
2
Δ𝑡𝑘1)

𝑘3 = 𝑓 (𝑞𝑛 + 3
4
Δ𝑡𝑘2)

𝑞𝑛+1 = 𝑞𝑛 + 2
9
Δ𝑡𝑘1 +

3
9
Δ𝑡𝑘2 +

4
9
Δ𝑡𝑘3

(9)

This allows us to reach good accuracy even when using large time
steps. We use trilinear interpolation for intermediate velocity sam-
ples and tricubic interpolation for the actual advection of the fluid
quantities.
Tricubic interpolation is much more expensive, but also two or-

ders of magnitude more accurate than trilinear interpolation [Brid-
son 2015]. Because of their heavy use in the program, both tricubic
and trilinear kernels have been optimized to reduce their use of local
variables. This inevitably leads to less readable code but has proven
to be an efficient way to get more than a two-time speedup on those
function calls. The original implementation of the tricubic kernel
had so many local variable declarations that it would exhaust all
available registers on the GPU, consequently limiting the number
of threads that could be launched in parallel.
Numerical Errors as Viscosity: As mention before, we chose

to drop the viscosity term from the Navier-Stokes equations. The
idea behind this is twofold. First, we want to make sure we capture
as many visual details as possible within the limits of our grid
resolution. Secondly, most numerical methods for simulating fluids
unavoidably introduce errors that can be physically reinterpreted
as viscosity [Bridson 2015]. Not explicitly modeling viscosity also
reduces the amount of calculation required per time step.
Particle-to-Grid by Replacement: At the beginning of each

time step, particles are scattered to the grids (P2G) through a GPU
kernel where each thread scatters a single particle. Thewrite hazards
are resolved using atomic functions that perform a read-modify-
write atomic operation on the grids. This ensures that no thread
will overwrite a value that was just set by another thread running
concurrently. The use of those operations is known to lead to severe
performance degradation [Gao et al. 2018], but it is possible to reduce
the impact of atomic functions by minimizing particle overlap in

the particle files directly. Such optimization can easily be done in
Houdini as shown in Fig. 6.

Fig. 6. Both images show the same random distribution of particles in 2D,
but particles strongly overlapping others were removed from the image on
the right.

Conducting this simple step has led to performance comparable to
completely avoiding the use of atomic functions since threads rarely
run intowrite-conflicts. As opposed to common implementation, our
sourcing is done by replacement instead of by addition which has
multiple advantages in terms of control. First, it is easier to model
abrupt changes such as drastic velocity changes without having to
inject excessive force to counter the momentum already present in
the simulation. This kind of discontinuity in the grids also tends to
create interesting details as the simulation evolves. Secondly, values
inside the grids stay bounded by the source which allows the user
to easily define shader ramps as well as other parameters depending
on the range of values inside the grids.
Our P2G is done in three steps. We start by clearing the back

buffer of all grids, we then scatter the particles to the back buffers
using atomic functions. Finally, values exceeding a threshold of
1 × 10−5 on the back buffer will overwrite the values of the front
buffer. This "set" operation is a little more computationally expensive
than "add", but it is negligible compared to other steps of the solver.
The particle scattering uses a cubic pulse function [Quilez 2021] that
smoothly transition from zero at the particle surface to one at its
center. One thing to note is that since each thread handles a single
particle, it is possible to make this step very slow when scattering
large particles. It is therefore more efficient to source a point cloud
with thousands of small particles in the shape of a sphere instead of
one big particle to fill the same space in order to take advantage of
the parallel nature of the hardware.

Dense Wind: As opposed to the current trend in fluid simula-
tions, our approach is to use a dense domain instead of a sparse

:4 • Sirois-Vigneux, A.

one. It is a common mistake to neglect the contribution of air mo-
tion in smoke and fire simulations for computer graphics. Although
some phenomena can properly be modeled with sparse domains,
most of them will be lacking important features that are too often
replaced by excessive procedural turbulence. Our program allows
the user to define each side of the domain as either a solid boundary
or a free surface. Free surfaces can be coupled with a wind force to
simulate the interaction of the environment on our finite simulated
domain. The user can define a procedural vector Perlin noise using
cudaNoise [Lehtinen 2021] along with a wind direction that will be
blended on two opposite sides of the domain over one second.

®𝑢𝑛+1 = ®𝑢𝑤𝑖𝑛𝑑Δ𝑡 + ®𝑢𝑛 (1 − Δ𝑡) (10)

This wind velocity is being transported across the domain similar
to a wind tunnel until it exits on the other side. This leads to more
natural behavior than adding procedural turbulence directly on top
of the rendered voxels as it lets the solver smoothly handles the
integration of the procedural wind with what is already happening
in the simulation domain.
Air Turbulence: It is also possible to inject turbulence into the

simulation. Two masks can be used to control where turbulence
is added. The first mask uses temperature to keep the turbulence
outside the renderable volume as we commonly want to add details
at the interface between air and density without perturbing the gen-
eral motion of the simulation. The second mask is derived from the
velocity magnitude to add more turbulence to fast-moving regions
of the simulation where strong pressure fronts can appear. This also
allows us to modulate the turbulence in ways that will not affect
the very slow-moving part of the simulation. Like the wind force,
this turbulence is also generated using [Lehtinen 2021], but instead
of using the Perlin noise ®𝜓 directly, we transform it into curlnoise
using the formula provided in [Bridson 2015].

®𝑢𝑐𝑢𝑟𝑙𝑛𝑜𝑖𝑠𝑒 = ∇ × ®𝜓 (11)

The curlnoise is calculated at the voxel centers similar to how diver-
gence is computed and is temporarily stored on the velocity back
buffers before being scattered to the front buffers. The scattering step
needs to rely on atomic functions as the quantities from the voxel
centers need to be weighed and distributed to the corresponding
faces using backward trilinear interpolation. Failing to use atomic
functions would lead to non-deterministic behavior because of the
write hazards. To control the magnitude of the vectors generated
from the curl computation in floating-point precision, we clamp the
magnitude of the curlnoise using the following expression.

®𝑢𝑐𝑢𝑟𝑙𝑛𝑜𝑖𝑠𝑒 ←
®𝑢𝑐𝑢𝑟𝑙𝑛𝑜𝑖𝑠𝑒
| | ®𝑢𝑐𝑢𝑟𝑙𝑛𝑜𝑖𝑠𝑒 | |2

min{| | ®𝑢𝑐𝑢𝑟𝑙𝑛𝑜𝑖𝑠𝑒 | |2, | | ®𝜓 | |2}. (12)

Vorticity Confinement: Our solver also supports vorticity con-
finement which can be used to boost the rotational component of
the velocity field [Fedkiw et al. 2001]. The idea behind this tech-
nique is to restore some momentum lost during the non-divergent
projection. It is also possible to provide a negative parameter to
prevent the simulation from spinning as in candle simulations. Our
implementation follows the one outlined in Bridson’s book [Bridson
2015]. The results are visually appealing, but the velocity averaging
required with MAC grids to properly compute the curl as a finite

central difference over 2Δ𝑥 makes this operation computationally
expensive. Similarly to the curlnoise implementation, we clamp
the magnitude of the vorticity vectors to prevent instability due to
numerical errors.

3.2 Rendering
To use the highly optimized hardware trilinear interpolation, we
copy the temperature grid to a CUDA 3D texture. This has the
disadvantage of increasing the memory footprint, but at the time
of this writing, atomic operations on textures are not allowed to be
used under current GPU hardware which explains why we must
maintain a temperature grid for simulation as well as a temperature
texture for rendering [Gao et al. 2018].

Multiple Scattering as a Gaussian Convolution: We also cre-
ate another CUDA 3D texture at 1

4 the temperature grid resolution
that stores the emission contribution as specified by the shader.
This texture will then be iteratively convolved with a 3 × 3 × 3
discreet Gaussian kernel to approximate multiple scattering (MS) of
the emission [Premože et al. 2004]. This convolution was also imple-
mented with 5 × 5 × 5 and 7 × 7 × 7 kernels to lower the number of
iterations, but it was empirically demonstrated that more iterations
of the 3 × 3 × 3 kernel led to better performance.

Grid Raymarching: Our renderer starts by testing for intersec-
tions with the domain. This intersection testing procedure comes
from [Prunier 2021] as it outperforms the implementation provided
by Nvidia in the CUDA Samples. Our program does not use any kind
of acceleration structure to speed up rendering. This brute force ap-
proach still works reasonably well in practice as rendering is rarely
the bottleneck of execution. Each thread renders a single pixel and
will only start raymarching if the ray intersects the domain. As ray-
marching is performed, both the temperature and the approximated
multiple scattering are sampled and interpreted according to the
shader definition. High-temperature values can be remapped by a
vector-valued ramp to light emission colors. Single scattering is also
a vector-valued parameter that allows the user to define the comple-
ment of the wavelength to be absorbed by the participating media
[Wrenninge 2012]. As previously mentioned the temperature grid
is used to drive both the density and emission components of the
shader. The general structure of the ray marcher is inspired by the
implementation provided by OpenVDB [Museth et al. 2021]. Only
directional lights are supported by the renderer as those are highly
efficient to render volume with and can be combined to create more
elaborate lighting effects.

Writing the Framebuffer to Disk: Our program can render
to multiple file formats such as PPM, PNG using LodePNG [Van-
devenne 2013] and OpenEXR using Tiny OpenEXR [Fujita 2021].
None of those formats have external dependencies since everything
is provided as header files in the third-party directory. OpenEXR is
the default and recommended format as it is the standard in visual
effects while also being the fastest option. The files are written to
disk using RLE compression to keep the GPU waiting as little time
as possible.

BLAZE: A Parallel Fluid Solver and Renderer on the GPU • :5

(a) (b) (c)

()(e)(d)

Fig. 7. Multiple simulations and renders generated with Blaze. (a) Rocket Launch, (b) Smoke Plume, (c) Ground Fire, (d) Fire Debris , (e) Explosion, (f) Tornado

3.3 Scene Description
The program expects a JSON file with a .blz extension that defines
how the simulation and render will be performed. We use the Rapid-
JSON C++ library [Yip 2021] to parse the scenes. Such scene files are
provided in the scenes directory as part of the project on GitHub.
CustomBinary Particle Files: A particle file is a custom binary

file format with a .part extension optimized to speed up the sourcing
step of the solver. It consists of a series of 8 floats (32 Bytes) per
particle following the memory layout shown in Fig. 8.

POS.X PSCALE TEMPPOS.Y POS.Z VEL.X VEL.Y VEL.Z

Fig. 8. A particle file stores each particle sequentially as 8 floats: 3 floats
for the position, 3 floats for the velocity, 1 float for the pscale (2 times the
radius) and 1 float for the temperature.

We initially tried to store the particles in ASCII JSON files, but our
tests have shown this could be sped up by more than two orders of
magnitude by using our particle format. This speed gain is especially
critical as it is one of the two single-threaded CPU processes that
runs while the GPU is waiting. The source particles can either be
static (read once on the first time step) or animated (read on each
time step).
Houdini Digital Asset: All scenes and particle files were gener-

ated using the provided Houdini Digital Asset (HDA). It is therefore
possible to create novel scenes using it within Houdini Apprentice,
the free version of the software.

4 RESULTS
Here are six scenes that were created using the provided HDA. The
scenes as well as the Houdini file that was used to generate them
are all provided along with the full source code on GitHub. All
scenes were run using an Nvidia GeForce GTX 1080 Ti GPU with 11
GB of VRAM. See Table 1 for a detailed breakdown of the runtime
performance achieved with our implementation.

4.1 Rocket Launch
In Fig. 7 (a), a small cluster of particles is injecting high temperature
and velocity toward the ground. Velocity drag is used to contain
the outward motion and give a sense of scale to the simulation.
Some velocity particles are also scattered on the ground to simulate
friction with the terrain hence contributing to the rolling motion of
the smoke.

4.2 Smoke Plume
In Fig. 7 (b), a small source close to the ground is emitting tem-
perature. The wind force is used to slowly move the plume across
the grid. Our high-order advection scheme couple with the tricubic
interpolation help at preserving the fine details. High-frequency
curlnoise is added around the plume to create more fine details.
A small amount of negative cooldown is also used to counter dis-
sipation. This helps at keeping the smoke plume crisp and dense
throughout the simulation.

4.3 Ground Fire
In Fig. 7 (c), patches of temperature particles are scattered on the
ground emitting higher temperature in places where the point den-
sity is more important. Strong high-frequency turbulence is added
to the simulation to generate more details around the fast-moving
flames. A strong cooldown is also used to keep the fire close to the
ground and make the smoke dissipate quickly. The wind plays a
critical role in making those scenes convincing.

4.4 Fire Debris
In Fig. 7 (d), small sources are emitting temperature in multiple
directions. Cooldown is used tomake the fire trails disappear quickly.
Particles with noisy velocity are sourced in the domain one frame
ahead of the temperature particles to create more complex sourcing
profiles through advection. The wind also plays an important role
here by transporting the smoke trails as expected in an exterior
environment.

:6 • Sirois-Vigneux, A.

Table 1. Average simulation and render time per frame in seconds at 1280 × 720

Scene Domain Voxels # Max Particles # GPU Mem. P2G Turb. Solver Advect MS Render Others Total

Ground Fire 12 M 12,865 617 MB 0.00 0.02 0.24 0.08 0.00 0.11 0.06 0.51
Explosion 98 M 278,722 4,803 MB 0.00 0.20 3.27 0.59 0.01 0.38 0.14 4.59
Fire Debris 99 M 42,074 4,828 MB 0.03 0.17 3.56 0.49 0.01 0.07 0.13 4.47
Rocket Launch 80 M 228,325 3,924 MB 0.03 0.17 2.86 0.45 0.06 0.24 0.13 3.95
Tornado 87 M 302,402 4,236 MB 0.05 0.18 3.12 0.55 0.00 0.11 0.10 4.11
Smoke Plume 100 M 64,720 4,865 MB 0.03 0.20 3.38 0.58 0.01 0.17 0.13 4.49

4.5 Explosion
In Fig. 7 (e), the first frames of the simulation inject hundreds of
thousands of particles into the simulation to precisely define the
shape of the explosion. The amount of outward velocity sourced
stays conservative to preserve the fine details scattered to the grid
and prevent the creation of large pressure fronts.

4.6 Tornado
In Fig. 7 (f), choreographed particles are animated following the
shape of a tornado while emitting temperature. The domain is also
filled with additional velocity particles that represent the air pulled
toward the tornado. Those air particles need to be very sparse in or-
der to inject enough velocity so the tornado keeps its shape without
preventing the fluid solver from properly moving the fluid according
to the divergence-free velocity field.

5 CONCLUSIONS
Our framework tries to leverage the parallel nature of modern GPU
hardware to accelerate the whole fluid simulation and rendering
pipeline commonly present in the visual effects industry. Our imple-
mentation eliminates the bottlenecks related to memory transfers
between host and device as large data structures required for fluid
simulation only exist in GPU memory. The scene description is also
designed to provide the smallest number of user-defined parameters
while still preserving all the necessary flexibility to model many
fluid phenomena. This approach leads to a very fast and portable
system that minimizes the number of steps required to get from the
idea to the final pixels.

REFERENCES
R. Allen. 2021. raytracinginoneweekendincuda. https://github.com/rogerallen/

raytracinginoneweekendincuda. (2021).
B. Bitterli. 2021. incremental-fluids. https://github.com/tunabrain/incremental-fluids.

(2021).
R. Bridson. 2015. Fluid simulation for computer graphics. CRC press.
R. Fedkiw, J. Stam, and H. W. Jensen. 2001. Visual simulation of smoke. In Proceedings of

the 28th annual conference on Computer graphics and interactive techniques. 15–22.
S. Fujita. 2021. tinyexr. https://github.com/syoyo/tinyexr. (2021).
M. Gao, X. Wang, K. Wu, A. Pradhana, E. Sifakis, C. Yuksel, and C. Jiang. 2018. GPU

optimization of material point methods. ACM Transactions on Graphics (TOG) 37, 6
(2018), 1–12.

G. A. A. Gomes. 2009. Linear solvers for stable fluids: GPU vs CPU. 17th EncontroPor-
tugues de ComputacaoGrafica (EPCG09) (2009), 145–153.

H. Lehtinen. 2021. cuda-noise. https://github.com/covexp/cuda-noise. (2021).
K. Museth, P. Cucka, M. Aldén, and D. Hill. 2021. OpenVDB. (2021).

https://www.openvdb.org.
S. Premože, M. Ashikhmin, J. Tessendorf, R. Ramamoorthi, and S. Nayar. 2004. Practical

rendering of multiple scattering effects in participating media. In Proc. of Eurograph-
ics Symposium on Rendering, Vol. 2. Citeseer, 363–374.

J.-C. Prunier. 2021. Scratch a Pixel 2.0. (2021).
https://www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-
rendering-simple-shapes/ray-box-intersection.

I. Quilez. 2021. Inigo Quilez Personal Website. (2021).
https://www.iquilezles.org/www/articles/functions/functions.htm.

A. Ralston. 1962. Runge-Kutta methods with minimum error bounds. Mathematics of
computation 16, 80 (1962), 431–437.

J. Stam. 1999. Stable fluids. In Proceedings of the 26th annual conference on Computer
graphics and interactive techniques. 121–128.

J. Stam. 2003. Real-time fluid dynamics for games. In Proceedings of the game developer
conference, Vol. 18. 25.

L. Vandevenne. 2013. lodepng. https://github.com/lvandeve/lodepng. (2013).
M. Wrenninge. 2012. Production volume rendering: design and implementation. CRC

Press.
M. Yip. 2021. rapidjson. https://github.com/Tencent/rapidjson. (2021).

https://github.com/rogerallen/raytracinginoneweekendincuda
https://github.com/rogerallen/raytracinginoneweekendincuda
https://github.com/tunabrain/incremental-fluids
https://github.com/syoyo/tinyexr
https://github.com/covexp/cuda-noise
https://github.com/lvandeve/lodepng
https://github.com/Tencent/rapidjson

	Abstract
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Simulation
	3.2 Rendering
	3.3 Scene Description

	4 Results
	4.1 Rocket Launch
	4.2 Smoke Plume
	4.3 Ground Fire
	4.4 Fire Debris
	4.5 Explosion
	4.6 Tornado

	5 Conclusions
	References

