
LightGraph:
Efficient Multiple Scattering in Participating Media using

Shortest Path Finding
Alexandre Sirois-Vigneux

alexandre.sirois-vigneux@umontreal.ca
Université de Montréal

Combined Scattering Single Scattering Multiple Scattering

Figure 1: Render of multiple scattering using the technique presented in this paper. This shows from left to right: the final
render, the single scattering contribution and the multiple scattering contribution.

ABSTRACT
We present an efficient way of estimating multiple scattering in
discrete high resolution heterogeneous participating media. Our
approach is based on a stochastically generated graph which es-
timates how light propagates through the volume using shortest
path finding. This new method provides a way of achieving high
quality photorealistic multiple scattering effect at a fraction of the
computational cost of commonly used techniques in visual effects
nowadays. The goal is not to be physically accurate nor is it to
run in real-time, but to be a fast and reliable solution to allow
quick turnarounds from a practical standpoint. Our method pro-
duce results that looks physically correct, work consistently across
multiple cases containing animation and provide a minimal number
of adjustable parameters while maximizing flexibility.

KEYWORDS
global illumination, participating media, multiple scattering, short-
est path finding, precomputation, openvdb

1 INTRODUCTION
Computing multiple scattering in nonhomogeneous participating
media has always been a challenging problem in computer graphics.
The first successful approaches relied on Monte Carlo path tracing
with the work of Kajiya and Von Herzen [6], but those suffered from
very expensive render times. From that point, many papers were
published over the years trying to improve upon this technique
using bidirectional path tracing with Lafortune and Willems [9] or

metropolis path tracing with Pauly et al. [13]. Those solutions, al-
though physically correct and unbiased, still converge at rates that
might not be practical in a production setting. Other approaches
have tried to approximate the complex phenomenon with classical
diffusion approximation (CDA) with the work from Stam [17] while
others have been relying on density estimation like Jensen with
photon mapping [4]. A fair number of researchers have also tried
to achieve real-time visualization of multiple scattering such as the
work from Kun Zhou et al. [21]. Those real-time techniques tend
to impose too many constraints in regards to the volume resolu-
tion and animation, preventing them from having any practicle
application in visual effects.

The current trend in visual effects production still gravitates
around path tracers like Arnold because of how straight forward
and predictable those system are. Large render farms owned by big
studios have made it possible for those expensive techniques to be
utilized in practice for the past few years. The industry has lean
toward simpler techniques that use more machine hours and fewer
man hours claiming that was the most effective tradeoff production-
wise. The visual effects industry is now rapidly changing to a model
where tasks that use to take months are now expected within weeks.
In this new reality, clients reviews are often done twice a day and
studios are expected to address notes in a few hours which makes
a 32 hours render completely impractical regardless of the sheer
amount of parallel farm power that even the biggest visual effects
houses might have.

As a way to compare results and ultimately track progress in
the field, most researchers evaluate the quality of their work by
comparing it to the ground truth. Although this makes sense in
the context of synthesizing the world around us in a physically
accurate way, it turns out that none of this really matters when it
comes down to creating the next Avenger film where the metric of
choice is: "Does it look cool?" which is a lot more subjective and
inaccurate but still precisely captures the main concerns of visual
effects studios. Very often, actual footage shot in camera will be
altered to better suit the creative vision of the director, which again
stresses the importance of not using physical accuracy as our only
way of evaluating the value of a method.

We propose a solution to estimate the effect of multiple scatter-
ing using shortest path finding (SPF). Single scattering events are
handled with traditional ray marching while multiple scattering
events are approximated by performing density estimation on a
point cloud that corresponds to the vertices of a graph. The idea
is to stochastically define multiple graphs with a few hundreds
vertices in the volume, then ray march the edges to evaluate their
transmittance according to the user provided density grid and use
those transmittance value as weights to find the least occluded
path between each pair of vertices with shortest path finding. The
process can be repeated multiple times in parallel and rasterized
down to a volumetric grid. The multiple scattering grid can then be
treated as an emission component by the ray marcher at render time
which makes it very efficient. Even though this technique is intrin-
sically biased, results empirically demonstrate that the technique
could still offer a practical solution in visual effects thanks to its
performance advantage over the alternative techniques currently
used in production.

2 PREVIOUS WORK
B. Wang and N. Holzschuch present a technique to precompute the
multiple scattering events, assuming an infinite medium, and store
it in two 4D tables [19]. Their technique can be used with multiple
rendering algorithms and is able to speed up convergence signifi-
cantly. Unfortunately, it only applies to homogeneous participating
media which makes it unusable to render things like clouds, smoke
or any simulated fluids.

Szirmay-Kalos et al. propose a real-time method to compute
multiple scattering in nonhomogeneous participating media having
general phase functions [18]. Their technique is based on a particle
system assuming that the volume is static while the light and camera
can still be animated. They store the radiance interaction between
particles in what they call an illumination network. Their technique
allow the illumination to be computed in real-time, but the result
is quite low resolution and could not be used in a visual effects
or animation. Also, the fact that this technique does not support
animated volumes restricts its usage considerably.

D. Koerner et al. propose a method called flux-limited diffusion
for the rendering of multiple scattering effects in participating me-
dia [8]. Their technique offers an improvement over popular meth-
ods based on diffusion approximation especially for transparent
regions which lead to a better match of the correct light trans-
port. Their technique is applicable to heterogeneous media, where
opaque material is embedded within transparent regions. Although

this technique should generalize to more complex lighting config-
uration, we don’t know how it would behave under environment
lighting sampled from an high-dynamic-range (HDR) map.

Kallweit et al. present a technique for efficiently synthesizing
images of atmospheric clouds using a combination of Monte Carlo
integration and neural networks [7]. Instead of simulating all light
transport during rendering, they pre-learn the spatial and direc-
tional distribution of radiant flux from multiple cloud examples
rendered with Monte Carlo simulations. Their solution efficiently
predicts the radiance at any point in the cloud and can therefore
synthesize images of clouds that are nearly indistinguishable from
the reference solution in a very short amount of time. One limitation
of their system is that it’s highly specialized toward cloud render-
ing and does not directly generalize to arbitrary heterogeneous
participating media, limiting its application.

Jensen et al. present an extension of photon mapping for com-
puting global illumination in scenes with participating media [4].
The method is based on bidirectional Monte Carlo ray tracing and
uses photon maps to increase efficiency and reduce noise. Effects
such as multiple scattering are easily reproduced by this technique.
The large number of point cloud lookups executed as the volume is
ray marched makes the render time suboptimal even when using
an acceleration structure such as a balanced Kd-Tree. It is also not
clear how well this technique would handle emissive volume like
fire.

3 LIGHT TRANSPORT IN PARTICIPATING
MEDIA

Note that the technique presented in this paper makes several
assumptions in regard to the theory presented in this section. We
are interested in calculating the incoming radiance from a given
direction 𝜔 . If we consider a photon travelling through a volume
towards the camera along 𝜔 , this photon can either be absorbed
by the participating media or scattered in a new direction meaning
that the ray will never hit the camera sensor. Those phenomena
are called absorption and out-scattering and are denoted by their
respective coefficients 𝜎𝑎 and 𝜎𝑠 . The scattering coefficient 𝜎𝑠 can
also be wavelength dependant which leads to color shifts as the
light scatters through the media. Photons travelling in an arbitrary
direction could also be scattered in the direction 𝜔 and therefore
land on the sensor, this is called in-scattering also denoted by 𝜎𝑠 .
The probability distribution for scattering events is called a phase
function [20] denoted by 𝑝 (𝑥, 𝜔𝑖 , 𝜔) where𝑥 is a point in the volume
and 𝜔𝑖 is the direction of incoming radiance. The last component
that needs to be considered is the emission of light that occurs in
volumes such as fire which is denoted by 𝐿𝑒 . The change in radiance
at point 𝑥 in direction𝜔 can be expressed as the differential equation

𝜕

𝜕𝑥
𝐿(𝑥,𝜔) = 𝐿𝑖 (𝑥, 𝜔) − 𝐿𝑜 (𝑥, 𝜔)

= 𝜎𝑎𝐿𝑒 (𝑥, 𝜔) + 𝜎𝑠𝐿𝑖 (𝑥,𝜔) − 𝜎𝑠𝐿(𝑥,𝜔) − 𝜎𝑎𝐿(𝑥,𝜔)
(1)

where 𝐿𝑖 is the incoming radiance at point 𝑥 and 𝐿𝑜 is the resulting
radiance at point 𝑥 . We will be referring to the out-scattering and
absorption together as the extinction coefficient denoted by 𝜎𝑒 such
that

𝜎𝑒 = 𝜎𝑎 + 𝜎𝑠 . (2)
2

Another value that needs to be introduced is the albedo of the media

𝜌 =
𝜎𝑠

𝜎𝑒
(3)

which defines how dark or bright the media is. In order to solve for
the transmittance of an infinite homogeneous media over a distance
𝑡 we can solve the following ordinary differential equation

𝑑𝐿(𝑡) = −𝜎𝑒𝐿(𝑡)𝑑𝑡 . (4)

By re-arranging the terms and integrating both sides we get

𝐿(𝑡)
𝐿(0) = 𝑒−𝜎𝑒𝑡 . (5)

This relationship is called Beer’s lawwhere transmittance is denoted
by

𝑇 (𝑥 + 𝜔𝑡, 𝑥) = 𝑒−𝜎𝑒𝑡 . (6)
This law still applies to the general case of heterogeneous partici-
pating media which is the one we are interested in. This yields the
following formulation

𝑇 (𝑥 ′, 𝑥) = 𝑒

∫ 𝑥

𝑥′ 𝜎𝑒 (𝑡)𝑑𝑡 (7)

where 𝑥 ′ = 𝑥 +𝜔𝑡 . The incoming radiance 𝐿𝑖 (𝑥,𝜔) can be expressed
as the integral

𝐿𝑖 (𝑥,𝜔) =
∫
Ω
𝑝 (𝑥, 𝜔 ′, 𝜔)𝐿(𝑥,𝜔 ′)𝑑𝜔 ′ (8)

where Ω is the unit sphere centred in 𝑥 and the irradiance from
direction 𝜔 ′ is weighted by the normalize phase function 𝑝 . If we
use equation 2 and 8 inside equation 1we get the integro-differential
equation [4]

𝜕

𝜕𝑥
𝐿(𝑥,𝜔) = 𝜎𝑎 (𝑥)𝐿𝑒 (𝑥,𝜔)

+ 𝜎𝑠 (𝑥)
∫
Ω
𝑝 (𝑥, 𝜔 ′, 𝜔)𝐿(𝑥, 𝜔 ′)𝑑𝜔 ′

− 𝜎𝑒 (𝑥)𝐿(𝑥,𝜔) .

(9)

Integrating both sides of the equation along a straight path from
𝑥0 to 𝑥 (in direction 𝜔) gives the following integral equation

𝐿(𝑥,𝜔) =
∫ 𝑥

𝑥0
𝑇 (𝑥 ′, 𝑥)𝜎𝑎 (𝑥 ′)𝐿𝑒 (𝑥 ′, 𝜔)𝑑𝑥 ′

+
∫ 𝑥

𝑥0
𝑇 (𝑥 ′, 𝑥)𝜎𝑠 (𝑥 ′)

∫
Ω
𝑝 (𝑥 ′, 𝜔 ′, 𝜔)𝐿(𝑥 ′, 𝜔 ′)𝑑𝜔 ′𝑑𝑥 ′

+𝑇 (𝑥0, 𝑥)𝐿(𝑥0, 𝜔)
(10)

which further simplifies to

𝐿(𝑥, 𝜔) =
∫ 𝑥

𝑥0
𝑇 (𝑥 ′, 𝑥)

(
𝐿𝑒 (𝑥 ′) +

1
4𝜋

∫
Ω
𝐿(𝑥 ′, 𝜔 ′)𝑑𝜔 ′

)
𝑑𝑥 ′ (11)

if we drop the boundary condition term and assume that all par-
ticipating media should be treated as isotropic, which is what we
will do in this paper. Multiple scattering can be calculated using
equation 11 by recursive Monte Carlo integration where sampling
alternates between distances and directions, gradually building a
path toward the boundary and evaluating the radiance [7]. For
the sake of completeness, the phase functions 𝑝 (𝑥, 𝜔 ′, 𝜔) gives the

probability that an incident photon is deflected by an angle 𝜃 be-
tween 𝜔 ′ and 𝜔 . A convenient model for the phase function is the
Henyey-Greenstein function defined as

𝑝 (𝜃) = 1 − 𝑔2

(1 + 𝑔2 − 2𝑔𝑐𝑜𝑠𝜃)3/2
(12)

where the dimensionless parameter 𝑔 < 1 models the anisotropy
of the scattering [2]. In visual effects production, most volumes
are treated as isotropic even if some of them like clouds have a
very particular phase function that should not be ignored when
pursuing photorealistic images.

4 METHOD OVERVIEW
Our method tries to leverage the low-frequency nature of multiple
scattering in participating media by approximating the solution
with very few samples that are then rasterized into a sparse low-
resolution grid to ensure fast lookup at render time. Multiple scat-
tering is therefore precomputed and stored in memory before the
render starts. Looking at equation 11, this multiple scattering grid
(MSG) will be sampled similarly to the emission in the 𝐿𝑒 term.

Final Render

Single Scattering Multiple Scattering

Figure 2: Render of bunny_cloud.vdb from https://www.
openvdb.org/download/ using an environment light with a
HDR map of a sunset. Using our method, multiple scatter-
ing is not more expensive to compute with this configura-
tion than with pure directional lighting.

One particularity of our method is that we use SPF in order to
estimate how much light is travelling between two points in the
media instead of relying of random walks. This adds bias to our

3

https://www.openvdb.org/download/
https://www.openvdb.org/download/

solution, but also significantly speeds up its convergence as most
paths have a meaningful contribution to the solution.

Here are some of the main features of LightGraph. It supports
scene description provided as a chain of arguments through the
command line. It supports multiple lights per scene including point
lights, directional lights and environment lights with HDR map and
proper importance sampling as shown in figure 2. Each rendered
image is written to disk as an EXR image containing 3 Arbitrary
Output Variables (AOV) that respectively isolates the contribution
of single scattering, multiple scattering and emission. There is also
an option to output the LightGraph geometry (created on the fly
to compute multiple scattering) as ASCII files for debug or visual-
ization purpose. It’s also possible to send multiple camera rays in
order to reduce aliasing. The built-in shader handles temperature
grid and has a color ramp parameter that allows the user to remap
temperature values to emission colors for volume such as fire or
explosion as shown in figure 12. See the GitHub1 page for more
information about the implementation of LightGraph.

5 IMPLEMENTATION
Our method is implemented in C++ and is fully multithreaded using
TBB from Intel [14]. We also tried to use OpenMP but this turned
out to be much slower in terms of runtime performance. Multiple
libraries have been used to facilitate implementation as well as
to stick with some well establish standards in the visual effects
industry. Those are discussed in greater details in the data structure
subsection.

5.1 Shortest Path Finding as an Importance
Sampling Heuristic

BA

Figure 3: The background colors represent a 2D density grid
where dark values are associated with denser regions. On
top in white, we have a representation of a single 2D Light-
Graph. The path in orange shows how shortest path finding
can efficiently find the least occluded path between point A
and B. As long as at least one edge per graph passes through
this bottle neck, every iteration will return a similar trans-
mittance value associated with the (A,B) pair. This yields a
lot less variance than relying on random walks to build the
paths.

1LightGraph GitHub project: https://github.com/asiroisvigneux/LightGraph

Multiple Importance Sampling (MIS) is ultimately what has made
Monte Carlo simulation a practical solution for light transport. It
has the theoretical advantage of being unbiased, but even the state
of the art still struggles to converge in a reasonable amount of time
especially when multiple scattering is involved. Our approach has
no theoretical guaranteed to converge to the correct solution, but it
is empirically demonstrated to converge to a solution that appears
visually correct in the Result section.

Isolated Iterations100 Overlapping Iterations

Figure 4: On the left we have a visualization of the geometry
of 100 LightGraph iterations overlapping each other. On the
right we have 8 isolated iterations out of the 100. The ver-
tices of the graphs are colored by their value after Radiance
Diffusion. The whole process takes under 8 secondes to be
computed on the hardware described in the Results section.

Our method tries to avoid wasting time on paths that won’t
have a significant contribution to multiple scattering like described
in figure 3. By using SPF, we force our solution to only sample
paths of high radiance transfer. A strong prior of our method is that
we assume that only considering the most valuable path between
each pair of vertices in the volume is enough to properly estimate
multiple scattering. We therefore focus our efforts in sampling what
will have the most impact in terms of perceivable information. As
it will be discussed later on, this heuristic is a lot more expensive to
compute than MIS path tracing, but it’s also a lot less random. Since
the underlying graph that performs multiple scattering estimation
is pretty coarse, it is very likely that the solution returned from a
single LightGraph iteration will contain significant low-frequency
variance. As we aggregate more of those iterations, see figure 4,
this variance is expected to decrease until it’s not perceivable as
described in figure 7 in the Rate of Convergence section. The question
of bias regarding this estimator will also be discussed in the Results
section.

4

https://github.com/asiroisvigneux/LightGraph
https://github.com/asiroisvigneux/LightGraph

Point Cloud Creation Vertex Lighting Calculation Radiance DiffusionRaymarch Graph EdgesGraph Creation

Figure 5: Visualization of the main steps of a single LightGraph iteration. The program has the option to output geometric
information as ASCII file for debug or visualization purpose.

5.2 Data Structures
Our method is implemented using the OpenVDB library devel-
oped at DreamWorks Animation. OpenVDB is an Academy Award-
winning open-source C++ library comprising a novel hierarchical
data structure and a suite of tools for the efficient storage andmanip-
ulation of sparse volumetric data discretized on three-dimensional
grids [12]. This format has become the standard to store volumet-
ric data in the visual effects industry which makes it particularly
well adapted to our use case. OpenVDB also provide a basic imple-
mentation of a simple ray marcher with all the utility function to
efficiently perform intersection testing against their sparse data
structure. This code was used as a base for our own implementa-
tion. OpenVDB depends on multiple external libraries including
OpenEXR, developed by Industrial Light & Magic, which is used to
store the rendered image in high-dynamic-range half floating-point
format [5].

5.3 Algorithm Overview

Algorithm 1: Rendering with LightGraph
Result: 𝐸𝑥𝑟𝐼𝑚𝑎𝑔𝑒

Load 𝑉𝑑𝑏𝐺𝑟𝑖𝑑𝑠 from disk;
for 𝑖𝑡𝑒𝑟 ← 1 to𝑚𝑎𝑥𝐼𝑡𝑒𝑟 do

Point Cloud Creation;
Graph Creation;
Ray March Graph Edges;
Shortest Path Finding Solve;
Vertex Lighting Calculation;
Radiance Diffusion;

end
Aggregate vertex from all iterations to a sparse regular grid;
Rasterize Multiple Scattering to a volumetric 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝐺𝑟𝑖𝑑 ;
foreach pixel 𝑖, 𝑗 ∈ 𝐸𝑥𝑟𝐼𝑚𝑎𝑔𝑒 do

𝐸𝑥𝑟𝐼𝑚𝑎𝑔𝑒 [𝑖, 𝑗] ← Ray March(𝑉𝑑𝑏𝐺𝑟𝑖𝑑𝑠, 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝐺𝑟𝑖𝑑);
end

5.4 Multiple Scattering Estimation
Point Cloud Creation: We start by scattering points inside the
volume with dart throwing to maximize the quality of our esti-
mate using as little points as possible [10]. We have determined
empirically that 750 points per LightGraph iteration was a good
balance between resolution in the graph and runtime performance.
Points are only scattered in voxels containing density. Each point

is added at a distance of at least 𝛿 to all other points to ensure an
even distribution inside the density grid.

The user does not have to do anything special to enforce this
constraint of 750 points since the system will dynamically adjust 𝛿
as dart throwing is performed. A first estimate of 𝛿 is made based
on the size of the bounding box in order to be scale invariant. Then,
a predefined polynomial function estimates the rate at which the
points are expected to accumulate in the point cloud. A compari-
son with this expected value is made every 10000 points thrown,
followed by an adjustment of 𝛿 . 𝛿 is increased to slow down the
accumulation of points as it will force them to be further apart from
each other. The opposite behaviour is obtained by decreasing 𝛿 . In
total one million points are thrown in the density grid bounding box
per LightGraph iteration which means that 𝛿 is adjusted at most 99
times per iteration. There is an early stopping mechanism that ter-
minates dart throwing if the number of accumulated points exceeds
750. From our tests, early stopping is rarely triggered and, when it
is used, the iteration is always about to finish which is the expected
behaviour. The quality of the point cloud distribution would most
likely be compromised if an iteration was to early stop after just
a few dart throw. The main reason why the point cloud needs to
remain small is the complexity of the shortest path finding (SPF) al-
gorithm which is being used in the subsequent steps. Each iteration
modifies its own version of 𝛿 to enable thread-safe read/write access
as each iteration runs in parallel on separate threads. A separate
random number generator instance is also created per iteration to
ensure deterministic results of the algorithm.

Graph Creation: We then build a boolean adjacency matrix
to store the edges between the scattered points. A maximum of 12
connectionswith neighbouring points is allowedwithin amaximum
radius of 1.7 × 𝛿 .

Raymarch Graph Edges: Each edges of the graph are then ray
marched against the density grid of the input grid to compute the
transmittance of each segment. Those precomputed transmittance
values are then stored in another matrix of floating point values. A
scalar parameter is made available to the user to adjust the density
values separately for multiple scattering calculation. It is often
useful to decouple the density used for single scattering from the
density used for multiple scattering as seen in figure 17 in the
Results section. Other studies have also concluded that this density
decoupling would yield better fit to the Monte Carlo simulation in
denser media [3].

Shortest Path Finding Solve: Next we find the path with the
highest transmittance between each pair of vertices by running a
modified version of the Floyd-Warshall algorithm [1]. The solve
is performed per channel, such that if the volume being rendered

5

had wavelength dependant scattering value, it could in theory find
separate optimal paths for each RGB components. This step will
determine the path of highest transmittance by considering all
possible paths between each pair of vertices in the current graph.
The resulting transmittance is stored in a symmetric weight matrix
after the SPF solve. The paths themselves are never stored.

Vertex Lighting Calculation: The radiance received at each
vertex in the graph is calculated and stored in an array by ray
marching the density grid with shadow rays towards each light
source in the scene.

Radiance Diffusion: Before performing the radiance diffusion,
we adjust the weight matrix computed in the SPF step to enforce
energy conservation. We make sure that each vertex will not dif-
fuse more energy than what it has received at the Vertex Lighting
Calculation step. This is done by constraining the sum of all trans-
mittance from one point to all other points of the graph to sum
to one. This way, the graph will still contain the same total radi-
ance before and after diffusion. We then perform radiance diffusion
where each vertex of the graph will gather radiance from all other
points according to the normalized weights.

Aggregate Points to Sparse Regular Grid: Once all Light-
Graph iterations are computed, points are then aggregated in a
sparse regular grid to ensure fast lookup query. To achieve optimal
performance, the resolution of the grid is dynamically adjusted to
store approximately 8 points per voxel as recommended by Open-
VDB [11]. This step is crucial to the technique as we might be deal-
ing with a large number of points. The quality of this acceleration
structure will have a big impact on performance in the following
step where we rasterize the gathered radiance to a volumetric grid.

Figure 6: A 2D representation of the topology of the den-
sity grid in blue with, in orange, the multiple scattering grid
(MSG) topology at 1/4 the resolution of the density grid with-
out additional padding. The union of the green and orange
grid shows the MSG after voxel padding to prevent masking
artefacts at render time.

Rasterize Multiple Scattering to a VolumetricGrid: Amul-
tiple scattering grid (MSG) is created using the same sparse tree as
the density grid, but at 4 times the original voxel size by default
effectively creating a volume with a voxel count of (14)

3 = 1
64 of

the provided density grid. This drop in resolution will maintain a

low memory footprint, while still providing plenty of resolution
to properly capture multiple scattering which is intrinsically low-
frequency. This MSG prevents the algorithm from executing point
cloud query at each sample while ray marching the grids at ren-
der time. Since the data structure is sparse, we activate a padding
of one voxel surrounding every active voxel (for a maximum of
33 − 1 = 26 voxels) in the down-scaled MSG to prevent artefacts
due to the limited coverage of the MSG over the density grid, see
figure 6. This coverage is important as we will use the density grid
as a mask to the MSG at render time. We then iterate over each
active voxel of the MSG and perform density estimation with an
isotropic Gaussian kernel [16]

𝑀𝑆 (𝑥) =
𝑁∑
𝑖=1

𝑦𝑖
𝜅 (𝑥, 𝑥𝑖)∑𝑁
𝑗=1 𝜅 (𝑥, 𝑥 𝑗)

(13)

where𝑀𝑆 is the estimated multiple scattering at voxel position 𝑥 ,
𝜅 (·) is the kernel with parameters 𝜇 = 𝑥 and 𝜎 which defines the
weights of all considered neighbouring point positions 𝑥𝑖 .

The parameter 𝜎2 is derived from the Points per Kernel user
parameter, let’s call it 𝑘 . We first need to define the maximum
distance to look for other points in the point cloud. We know that
the data structure holds an average of 8 points per voxel. Let’s set
𝛾 to be the width of a voxel, we therefore have that

𝛾3 = 𝑉 (14)

where 𝑉 is a volume that is expected to contain 8 points. We can
then multiply 𝑉 by the ratio 𝑘

8 and solve for our maximum search
radius 𝑟 such that

4
3𝜋𝑟

3 = 𝑉
𝑘

8
4
3𝜋𝑟

3 = 𝛾3
𝑘

8

𝑟 =
3
√

3𝑘𝛾3
32𝜋

(15)

The expression of the Gaussian kernel in 𝑛 dimensions can be
simplified for our specific case to

𝜅 (𝑥𝑖 ; 𝜇, Σ) =
1

(2𝜋)𝑛/2 |Σ|1/2
exp

(
−12 (𝑥𝑖 − 𝜇)

⊤Σ−1 (𝑥𝑖 − 𝜇)
)

∝ exp
(
−12 (𝑥𝑖 − 𝜇)

⊤Σ−1 (𝑥𝑖 − 𝜇)
)

= exp
(
− 1
2𝜎2
| |𝑥𝑖 − 𝜇 | |2

) (16)

where Σ = 𝜎2I since the kernel is isotropic. We use a truncated
Gaussian kernel and only consider points with weights greater than
an empirically determined threshold of 0.1. We can now solve for
𝜎2 using this information.

exp
(
− 1
2𝜎2
| |𝑥𝑖 − 𝜇 | |2

)
≥ 0.1

− 1
2𝜎2

𝑟2 = ln 0.1

𝜎2 = − 𝑟2

2 ln 0.1

(17)

6

Table 1: Runtime of a LightGraph IterationwithRender. The
multiple scattering computation is far from being the most
expensive part of the algorithm considering a single itera-
tion. As we increase the number of LightGraph iterations
the computational cost will increase as well, but it should
never take more than a minute to converge in virtually all
possible scenarios.

LightGraph Step Runtime in Seconds Ratio
Point Cloud Creation 0.641 6.88%
Graph Creation 0.001 0.01%
Ray march Graph Edges 0.013 0.13%
Shortest Path Finding Solve 0.039 0.41%
Vertex Lighting Calculation 0.021 0.22%
Radiance Diffusion 0.011 0.11%
Rasterize Multiple Scattering 1.073 11.53%
LightGraph Iteration in Total 1.799 19.34%
Render Image 7.506 80.66%

5.5 Per Pixel Raymarching
At this point, we now have the multiple scattering stored in the
MSG. We can therefore trilinearly interpolate it at any point inside
the volume in constant time. It is therefore possible to use existing
techniques from ray tracing to ray march the volume treating the
multiple scattering as a simple emission grid.

In order to avoid artefacts that would occur from the resolution
mismatch between the density and the MSG, we use the density
grid as a mask over the MSG. For this mask, the density grid is
clamped to the [0, 1] range before being raised to a power of 0.25
by default which gives the best fit when compared to Monte Carlo
simulations.

The image is then ray marched using traditional techniques
to solve single scattering in participating media. Each primary
ray samples the temperature grid (if stored in the input VDB file)
as well as the MSG. Shadow rays are also cast from the primary
volume samples and ray marched towards each contributing light
of the scene. The temperature values are remapped to an RGB color
derived from the color ramp parameter part of the built-in shader.
When all pixels are done rendering, the RBGA value of each pixel
along with the 3 additional AOVs are saved to disk as an half float
EXR image.

5.6 Complexity Analysis
Most steps in the creation of the MSG involve an algorithmic com-
plexity of O(𝑛2) where 𝑛 is the number of points in the point cloud
generated in the first step. Unfortunately, the shortest path finding
step (SPF) runs in O(𝑛3) which breaks down as soon as the number
of points reaches a certain amount. To work around this limitation
we split the computation into 𝜆 separate LightGraph iterations that
are then aggregated. Since we force 𝑛 → 750, the SPF as well as all
the other steps inside the iteration become very predicable in terms
of runtime and can then be seen as a constant computation time.
The whole LightGraph loop then runs in O(𝜆𝑛3) which is a much
more viable solution than O((𝜆𝑛)3). This separation also makes the

algorithm trivially parallelizable. The computation time is further
reduced by rasterizing the multiple scattering estimate to the MSG
effectively taking the algorithmic complexity of the rendering part
from O(𝑝𝑠 (log𝑞 + 𝑠)) to O(𝑝𝑠2) where 𝑝 is the number of pixels in
the image, 𝑠 is an upper bound on the number of camera / shadow
samples per path and 𝑞 is the number of points aggregated from all
LightGraph iterations. Once computed theMSG effectively provides
this information in a constant time. As we can see in table 1 the
MSG creation is far from being the most costly part of the algorithm
considering a single iteration. In terms of memory footprint, our
method is in O(164𝜈 + 750𝜆) = O(𝜈 + 𝜆) where 𝜈 is the number
of voxels in the input density grid. On most modern machine, the
additional memory usage should not be noticeable even with large
𝜆 values.

5.7 Advantage of Precomputations
One key advantage of this method is that the noise generated from
the approximation is not perceivable unless the volume or the light
is animated. The multiple scattering estimation can be very biased
but still be visually believable since the noise is very low frequency
compared to the noise we usually get with Monte Carlo integration.
If the camera is moving around the volume, only the single scatter-
ing is recalculated to a new solution since the multiple scattering
solution will always be the same regardless of the camera. If the
light is changing, the underlying LightGraph iterations are still
going to stay the same from frame to frame. Only Vertex Lighting
Calculation and Radiance Diffusion will yield different results. The
fact that the underlying structure is not perturbed makes the so-
lution highly stable to light changes even with a small number of
iterations as demonstrated with the cloud scene in figure 9 from the
Results section. Finally, if the volume is animated, everything will
change from frame to frame which might require more iterations
to achieve temporal stability across the sequences.

5.8 Rate of Convergence
The number of points per kernel 𝑘 as well as the number of Light-
Graph iterations 𝜆 are the two user parameters responsible for
how stable the multiple scattering solution will be. In this section
we focus on how those parameters influence the stability, runtime
performance and level of detail of the solution in order to develop
an intuition about what controls the quality of the estimate. To
evaluate the rate of convergence of our method we use the Root
Mean Square Error (RMSE) metric defined as

𝑅𝑀𝑆𝐸 =

√√
1
𝑛

𝑛∑
𝑖=1
(𝑥𝑖 − 𝜇)2 (18)

where 𝑥𝑖 is the pixel value tested against the converged pixel value
𝜇. From figure 7, we are able to extract an order of convergence
of 0.135 which is quite bad in general, but in our case the orange
line in the figure represents the approximate threshold where the
error becomes unperceivable to the eye which happens after ≈ 35
secondes of computation in most cases.

Looking at figure 8 we observe that we can increase 𝜆 from
1 to 10 without paying any significant additional cost, thanks to
our parallel implementation. As soon as we exceed the number of
available threads on the machine, performance starts to decrease.

7

0 100 200 300 400 500
LightGraph iterations ()

0.08

0.10

0.12

0.14

0.16

0.18

0.20

R
M

SE

pixel error
perceivable limit

Figure 7: Root Mean Square Error (RMSE) of the pixel differ-
ence between a converged and a non-converged render with
respect to the number of LightGraph iterations. The orange
horizontal line represents the approximate point where the
error becomes unperceivable to the eye.

k = 1 k = 2 k = 3 k = 4 k = 5

0.89 s 0.89 s 0.92 s 0.90 s 0.89 s1.03 s 1.05 s 1.03 s 1.04 s 1.07 s

λ = 1 λ = 10 λ = 100 λ = 250 λ = 500

0.66 s 0.89 s 7.93 s 18.35 s 34.45 s1.01 s 1.00 s 1.18 s 1.64 s 2.45 s

Figure 8: Rate of convergence w.r.t 𝝀 and 𝒌. The first row
shows the results of increasing the number of LightGraph
iterations 𝝀 using a fix number of points per kernel 𝒌 = 1.
The bottom row shows the results of increasing 𝒌 when ras-
terizing the multiple scattering estimate to a low-resolution
grid using a fixed 𝝀 = 10. The runtime at the top of each im-
age represents the amount of time spent at calculating the
LightGraph data structure (left) and rasterizing it to a volu-
metric grid (right).

The results from the second row indicate that increasing 𝑘 is a
lot less costly than increasing 𝜆, but we also see that this tends to
smooth out the estimate which in some case might not be desirable.
In a case where the volume is not animated, we could get perfectly
good results with 𝜆 ≈ 25. If we have an animated sequence of
volume and can’t increase 𝑘 to preserve the details, we might need
to go to → 500 in order to reach temporal stability across the
sequence. Note that 𝑘 is always multiplied by 𝜆 to make the kernel
size independent from 𝜆. This means in practice that a combination

of 𝑘 = 5 and 𝜆 = 10 defines a kernel that uses 50 points per voxel
estimate.

6 RESULTS
In order to see how our technique compares with state of the art so-
lutions, we chose to render multiple scenes using both LightGraph
(our method) and the latest available version of Pixar’s production
renderer: RenderMan 23.2 [15]. We have tried to render both im-
ages within a similar timeframe to see what both softwares could
generate under a tight render time budget. We have also provided
a more converged version of the RenderMan image as a reference.
For RenderMan we use their path tracer integrator with a limit
of 10 multiple scattering bounces if not specified otherwise. The
hardware used for the tests is an Intel Hexa-Core i7-3930K CPU
@ 3.8GHz with 64GB of RAM. Each image is rendered at 960x540
which correspond to a quarter of a Full-HD frame in terms of pixel
count. The render specification of each image will be given in each
subsection respectively.

Note that as opposed to path tracing where the render time
scales linearly with the amount of pixel in the image, our method
decouples the multiple scattering computation from the image size.
This means that only the single scattering part of the algorithm,
which is relatively cheap, will depend linearly on the number of
pixels. The multiple scattering is therefore computed independently
of the pixel count which is especially efficient for high-resolution
images of volume covering a large portion of the frame.

Final Render

Single Scattering Multiple Scattering

Figure 9: Render of the Disney Cloud using LightGraph. Sin-
gle and multiple scattering contribution are isolated at the
bottom. Render Specifications: Lighting: 3 directional lights,
Iterations: 25, Points per Kernel: 1, Scatter Scale: 3.0, Scatter
Density Scale: 0.5, Scatter DensityMin: 0.025, Scatter Density
Mask Power: 0.25, Volume Color: 1.0, Scattering: 1.5.

8

LightGraph

34 s 58 s 35 m

Figure 10: Render of the Disney Cloud Data Set (quarter resolution) with 24 million voxels comparing both LightGraph and
RenderMan 23.2. As seen on the right, the physical nature of clouds makes it very hard for Monte Carlo path tracing to
converge in a reasonable timeframe.

6.1 Cloud
As previously mentioned, we use an overly simplified phase func-
tion model where we treat every volume as isotropic for the sake of
simplicity. Therefore, the clouds rendered in figure 10 won’t feature
the correct phase function with forward and backward scattering
peaks. That being said, we see that in a very short amount of time
our method achieves a noise-free image that would be perfectly
stable to both camera and light animation. Regarding the image
on the right, the path tracing approach does not take advantage
of the low-frequency nature of the expected solution for multiple
scattering. Each pixel is solving its own individual problem which
results in a lot of unnecessary calculation being done. In a setting
where the image is only 960 × 540 it might not be a problem to
let the render converge in ± 2h using the technique on the right.
The problem is that most animated and live action feature are now
rendering at 4k which means 16 times more pixels and thus 32h to
render a single frame. Even assuming a studio has access to infinite
parallel render power on a render farm, this kind of turnaround
times really starts to hurt production.

6.2 Explosion
Rendering explosion is a very expensive process because of the
volumetric lights casting soft shadows embedded in highly hetero-
geneous density field. Most light emitted from within the explosion
is absorbed by the density. Only the light emitted close to the edge
of the volume or in area of low density will be able to travel longer
distance before being absorbed. This is a very complex situation
to handle with traditional path tracing since most paths won’t be
able to connect the camera with self-emitted light. This problem
is particularly visible in the middle render of figure 11. This high
frequency noise can eventually be cleaned up using variance thresh-
old adaptive sampling but the process takes a very long time to
reach convergence. On the other hand, our method will be able to
capture the contribution of short paths by adjusting the size of the
kernel used to estimate multiple scattering. The longer paths will
also be properly approximated using SPF. For each iteration, within
the finite set of possible paths of the current graph, light will be

LightGraph

44 s46 s 1 h 18 m

Figure 11: Render of an Explosion with 31 million voxels
comparing both LightGraph and RenderMan 23.2. Looking
at the image in the middle from RenderMan, the high fre-
quency noise generated by the multiple scattering of the
emission component makes the image unusable in produc-
tion.

scattered using the least occluded path which makes our method
particularly good in condition where only a few very specific paths
would have a strong contribution to the final result. It is possible
to obtain a very believable but biased solution using just a few
iterations (±25) with our method, but the result will be unstable in
cases with volumetric fields animation. This animated scene has
required 500 LightGraph iterations to reach a stable flicker-free
solution.

6.3 God Rays
The scene rendered in figure 15 is probably the most challenging
in terms of single scattering because of the optically thin media
filling most of the screen where we see shafts of light from one
cloud layer to another. Multiple scattering, in this case, would be
primarily visible in optically thick areas such as the bottom and top
cloud layers. The contribution of multiple scattering is especially
important in a backlit setting like this one because it gives important

9

Final Render Single Scattering Emission Multiple Scattering Single Scattering + Emission

Figure 12: Render of an explosionwith self-illumination using LightGraph. Emission alongwith single andmultiple scattering
contribution are isolated. A composite of the emission with the single scattering (last image at the right) is also provided to
show the explosion without multiple scattering contribution. Render Specifications: Lighting: one directional light and one
environment light with a constant blue color, Iterations: 500, Points per Kernel: 1, Scatter Scale: 3.0, Scatter Density Scale: 1.0,
Scatter Density Min: 0.025, Scatter Density Mask Power: 1.0, Volume Color: 0.1, Scattering: (1.0, 1.25, 1.5).

Final Render

Single Scattering Multiple Scattering

Figure 13: Render of sunbeams shining through openings
in clouds using LightGraph. Single and multiple scattering
contribution are isolated at the bottom. Render Specifica-
tions: Lighting: 3 directional lights, Iterations: 25 Points per
Kernel: 2, Scatter Scale: 3, Scatter Density Scale: 1.0, Scatter
DensityMin: 0.05, Scatter DensityMask Power: 0.25, Volume
Color: 1.0, Scattering: 1.5.

information regarding the depth and overall shape of volumetric
objects. The image rendered with RenderMan is still very noisy even
with almost twice as much render time. Their path traced version
computes multiple scattering uniformly everywhere regardless of
its contribution. In a real-world scenario, this scene would be split
up in at least two render passes in order to properly control the

LightGraph

59 s53 s 1 h 24 m

Figure 14: Render of a Large Smoke Plume with 38 million
voxels comparing both LightGraph and RenderMan 23.2.
Spectrally varying scattering increases the level of percep-
tual noise in the case of RenderMan. Render Specifications:
Lighting: 3 directional lights, Iterations: 500, Points per Ker-
nel: 2, Scatter Scale: 2.0, Scatter Density Scale: 1.0, Scatter
Density Min: 0.075, Scatter Density Mask Power: 0.25, Vol-
ume Color: (0.8, 0.9, 1.0), Scattering: (0.75, 1.15, 1.5).

quality of the sharp god rays as well as the multiple scattering in
the top and bottom cloud layers.

6.4 Large Smoke Plume
This scene features a large smoke plume with wavelength depen-
dency that shifts the color of the light as it scatters through the
participating media in figure 14. The image from RenderMan con-
tains a large amount of high-frequency noise similar to the one
found in previous examples. More specific to this scene, we see
that the perceptual noise is amplified by the spectrally varying
scattering of the smoke plume, the noise is no longer monochrome
like it was in previous examples which makes it more visible. For
the image on the left, our method accounts for this vector value
scattering by multiplying the multiple scattering component by the
inverse of the scattering parameter which gives it the expected tint.

10

LightGraph

4 m 38 s 1 h 09 m7 m 26 s

Figure 15: Render of God Rays with 65 million voxels comparing both LightGraph and RenderMan 23.2 with 2 multiple scat-
tering bounces. For the image in themiddle, the number of multiple scattering bounces was reduced from 10 to 2 to help reach
convergence.

6.5 Snow

Final Render

Single Scattering Multiple Scattering

Figure 16: Render of a snow simulation using LightGraph.
Single and multiple scattering contribution are isolated at
the bottom. Render Specifications: Lighting: 3 directional
lights, Iterations: 500, Points per Kernel: 5, Scatter Scale: 1.0,
Scatter Density Scale: 0.001, Scatter Density Min: 0.025, Scat-
ter Density Mask Power: 0.25, Volume Color: 1.0, Scattering:
1.5.

In this scene, we try to approximate the light transport of millions
of individual ice crystals using high density participating media.
Our method allows us to effortlessly decouple the volume density
of single scattering from the volume density of multiple scattering.
We can therefore avoid creating an explicit surface to model the
snow. The left image in figure 17 shows both the detailed "surface"

of the snow approximated by the very high density volume cou-
pled with the soft multiple scattering effect obtain by scaling the
density values by 0.001 for the multiple scattering computation.
This decoupling is not possible with path tracing, which leads to a
compromise where the edge of the volume is not sharp enough to
properly represent a surface and the density of the participating
media is just too high to properly let the light scatter inside to
prevent the hard shadows from RenderMan’s version. There would
obviously be ways to recreate a similar look with RenderMan using
a separate surface coupled with the volume, but those setups tend
to take even longer to converge.

7 LIMITATION AND FUTUREWORK
Although this method has proven to be quite powerful compared
to what is used in production at the moment, it still has a fair bit of
limitations. In this section we discuss the weakness of the system
as well as the possible improvement that could be made upon the
current architecture.

7.1 Density Mask
To reduce memory usage and computation time, we store the multi-
ple scattering in a low-resolution grid (MSG) since it only contains
low-frequency information. To get proper results, we still need to
use the high resolution density grid as a mask to the MSG while
rendering. This masking operation leads to correct results in most
cases, but can also introduce some artefacts. In the explosion scene,
see figure 11, we observe that the multiple scattering is pretty weak
at the bottom of the explosion while the emission contribution is
clearly very important. When the density mask is applied, it reduces
the multiple scattering contribution in areas of low density which
leads to a biased estimate in those regions.

7.2 Screen Space vs World Space
Our solution precomputes the multiple scattering for the whole
volume before starting the actual per pixel render. This is ideal in
the cases where the volume being rendered fills most of the frame.
In cases where we would only see a small portion of the volume

11

LightGraph

32 s 47 s 36 m

Figure 17: Render of Snow with 3 million voxels comparing both LightGraph and RenderMan 23.2. On the right, the high
density of the snow completely occludes the light in some area leading to hard shadows that are less visually pleasing than
the render on the left.

being rendered, we would still need to compute multiple scattering
for the whole volume. Similarly, if we consider rendering a full
cloudscape formed of thousands of cloud instances where some of
those clouds are only visible as subpixel objets. The only way for
our method to go though with this would be to compute the MSG
of the clouds within the current render buckets and then flush this
data from memory as soon as possible to make room for the MSG
of the next buckets. This should work but would definitely require
more memory than traditional path tracing.

7.3 Disconnected Islands
One problem that can arise while generating the graph is the pres-
ence of disconnected islands. In a scene where a cloud would be
made out of three disconnected parts where one of them is receiving
strong direct illumination (see figure 18). We might expect this first
bit of cloud to scatter light towards the other pieces of the cloud that
don’t receive direct lighting. It turns out that since the point cloud
is only scattered inside voxels with density greater than 0 and that
connections beyond a certain search radius is prohibited, the two
disconnected islands of density are most likely also disconnected
in their LightGraph which will prevent them from transferring ra-
diance between density islands. The reason why LightGraph is not
filling the empty space with points is to focus the point cloud reso-
lution where it matters the most, since the point count is capped
at 750. There is probably a way to connect those density islands
without wasting points in empty space, but no elegant solution has
been found at the time of writing.

7.4 Sequence Optimization with Caching
Our method has been implemented in such a way that each frame
is independent from one another. Depending on the sequence of
frame that needs to be rendered some serious optimization could be
made. Caching intermediate steps to disk could save a ton of time
when rendering sequences. In a scenario where the volume and
the lighting is static while the camera is moving, the MSG could
be written to disk and then read back for the subsequent frames.
Therefore, the multiple scattering would be calculated once for

Figure 18: Disconnected Islands: The 3 clouds shown here
represent a single density grid with disconnected density
patches. The green edges represent actual connections in
the LightGraph, the dotted red edges are connections that
would be required to properly diffuse radiance to other dis-
connected density island. Since no points are kept in voxels
of density 0 and since connection lengths are bounded by a
maximum search radius, those red connections cannot exist.
Thus the scattering only happens inside the island receiving
direct illumination which is a problem.

the whole sequence and only the single scattering would need to
be recomputed for every frame. In a low-resolution setting, this
could even approach real-time performance. In the case where
the volume is static but the camera and lighting are dynamic, it
would be possible to reuse the generated LightGraph iterations by
only recomputing the Vertex Lighting Calculation and the Radiance
Diffusion steps before baking the multiple scattering to a grid. This
would still save a significant amount of computation by having the
slow parts of multiple scattering estimation being calculated once
for the whole sequence.

7.5 RandomWalks
It would be interesting to investigate random path generation in-
stead of relying on shortest path finding. This would definitely
eliminate a lot of constraints like the amount of point per itera-
tions and could also yield a more statistically sound solution with
less bias. On the other hand, this change could also lead to a large
increase in noise and decrease the global performance. Since the
solution is being rasterized down to a grid using a Gaussian kernel,

12

there might still be ways to converge much more quickly than with
path tracing even if we use a similar heuristic to determine light
paths.

7.6 GPU Implementation
With the recent wave of renderers ported to the GPU, we have
seen that GPUs can greatly accelerate parallelizable algorithms to
speeds way beyond what can be achieved even with the best CPUs
available. It would be interesting to see how of an improvement
could be gained since some scene are already approaching real-time
performance with our current implementation. This could open
up possibilities for interactive applications to view and manipulate
volume rendered with multiple scattering.

7.7 Geometric Occluders
Geometric occlusion have not been implemented in the system
due to time constraints, but the extension should be fairly straight
forward. Each edge of the LightGraph just needs to be cast against
the geometry in the scene before performing the Raymarch Graph
Edges step of the algorithm. If the ray hits a geometry that lies in
between the two points forming the edge, the transmittance should
be set to 0 which is equivalent as ray marching a voxel of infinite
density. The SPF algorithm will then avoid this edge as it normally
would with very occluded edges. The low-resolution of the MSG
might create small amount of light leaking around occluder surfaces
but this should not create any noticeable artefacts.

7.8 Anisotropic Phase Function
Our method does not support anisotropic phase functions for now
and therefore treats all volumes as isotropic. This choice was made
to simplify the system, but this could also be a straight forward ex-
tension. The shortest path finding solve would only need to consider
a phase function while evaluating the different branching options
for the graph by looking up the angle between connected edges.
This would definitely add a burden on the computation side, but it
shouldn’t be too hard to implement with the current architecture.

8 CONCLUSION
We introduced LightGraph which approximates multiple scattering
in both optically thick and thin nonhomogeneous participating
media using shortest path finding. Our method requires a small
amount of precomputation to estimate multiple scattering in a mat-
ter of seconds instead of hours. The number of user parameters
has been kept to a minimum while still maintaining a very high
level of flexibility. By relying on efficient ray tracing techniques to
evaluate single scattering and using our approximation for multi-
ple scattering, we benefit from the strengths of both techniques.
Our method is heavily based on the reasonable assumption that
multiple scattering is a very low-frequency phenomenon which
makes it particularly well suited for density estimation algorithms.
We have also shown that this technique yield visually compelling
noise-free images at a fraction of the computational cost of Monte
Carlo integration which makes it a potentially practical solution
for the visual effects industry. With LightGraph we chose bias over
variance, flexible over simplified and "good-looking" over physically
accurate.

REFERENCES
[1] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. 2009.

Introduction to algorithms. MIT press. 693–697 pages.
[2] Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. 2001. Visual simulation of

smoke. In Proceedings of the 28th annual conference on Computer graphics and
interactive techniques. 15–22.

[3] Kyle Hegeman, Michael Ashikhmin, and Simon Premože. 2005. A lighting model
for general participating media. In Proceedings of the 2005 symposium on Interac-
tive 3D graphics and games. 117–124.

[4] Henrik Wann Jensen and Per H Christensen. 1998. Efficient simulation of light
transport in scenes with participating media using photon maps. In Proceedings
of the 25th annual conference on Computer graphics and interactive techniques.
311–320.

[5] Florian Kainz, Rod Bogart, and Piotr Stanczyk. 2009. Technical introduction to
OpenEXR. Industrial light and magic (2009), 21.

[6] James T Kajiya and Brian P Von Herzen. 1984. Ray tracing volume densities.
ACM SIGGRAPH computer graphics 18, 3 (1984), 165–174.

[7] Simon Kallweit, Thomas Müller, Brian Mcwilliams, Markus Gross, and Jan Novák.
2017. Deep scattering: Rendering atmospheric clouds with radiance-predicting
neural networks. ACM Transactions on Graphics (TOG) 36, 6 (2017), 1–11.

[8] David Koerner, Jamie Portsmouth, Filip Sadlo, Thomas Ertl, and Bernd Eberhardt.
2014. Flux-limited diffusion for multiple scattering in participating media. In
Computer Graphics Forum, Vol. 33. Wiley Online Library, 178–189.

[9] Eric P Lafortune and Yves D Willems. 1996. Rendering participating media with
bidirectional path tracing. In Rendering techniques’ 96. Springer, 91–100.

[10] Don P Mitchell. 1987. Generating antialiased images at low sampling densities.
In Proceedings of the 14th annual conference on Computer graphics and interactive
techniques. 65–72.

[11] Ken Museth, Nick Avramoussis, and Dan Bailey. 2019. OpenVDB. In ACM
SIGGRAPH 2019 Courses. 1–56.

[12] Ken Museth, Peter Cucka, Mihai Aldén, and David Hill. 2020. OpenVDB.
https://www.openvdb.org.

[13] Mark Pauly, Thomas Kollig, and Alexander Keller. 2000. Metropolis light transport
for participating media. In Rendering Techniques 2000. Springer, 11–22.

[14] Chuck Pheatt. 2008. Intel® threading building blocks. Journal of Computing
Sciences in Colleges 23, 4 (2008), 298–298.

[15] Pixar. 2020. RenderMan. https://renderman.pixar.com/.
[16] Christian Robert. 2014. Machine learning, a probabilistic perspective. , 507–

513 pages.
[17] Jos Stam. 1995. Multiple scattering as a diffusion process. In Rendering Techniques’

95. Springer, 41–50.
[18] László Szirmay-Kalos, Mateu Sbert, and Tamás Umenhoffer. 2005. Real-Time Mul-

tiple Scattering in Participating Media with Illumination Networks.. In rendering
techniques. 277–282.

[19] Beibei Wang and Nicolas Holzschuch. 2017. Precomputed multiple scattering for
light simulation in participating medium. In ACM SIGGRAPH 2017 Talks. 1–2.

[20] Magnus Wrenninge. 2012. Production volume rendering: design and implementa-
tion. CRC Press.

[21] Kun Zhou, Zhong Ren, Stephen Lin, Hujun Bao, Baining Guo, and Heung-Yeung
Shum. 2008. Real-time smoke rendering using compensated ray marching. In
ACM SIGGRAPH 2008 papers. 1–12.

13

	Abstract
	1 Introduction
	2 Previous Work
	3 Light Transport in Participating Media
	4 Method Overview
	5 Implementation
	5.1 Shortest Path Finding as an Importance Sampling Heuristic
	5.2 Data Structures
	5.3 Algorithm Overview
	5.4 Multiple Scattering Estimation
	5.5 Per Pixel Raymarching
	5.6 Complexity Analysis
	5.7 Advantage of Precomputations
	5.8 Rate of Convergence

	6 Results
	6.1 Cloud
	6.2 Explosion
	6.3 God Rays
	6.4 Large Smoke Plume
	6.5 Snow

	7 Limitation and Future Work
	7.1 Density Mask
	7.2 Screen Space vs World Space
	7.3 Disconnected Islands
	7.4 Sequence Optimization with Caching
	7.5 Random Walks
	7.6 GPU Implementation
	7.7 Geometric Occluders
	7.8 Anisotropic Phase Function

	8 Conclusion
	References

